
 1.0 Edition 20210112

AIO3315
Analog IO Card

Software

Development

Kit

© Vecow AIO3315 Software Development Kit ii

Record of Revision

Version Date Page Description Remark

0.1 2020/12/21 All Initial Release

1.0 2021/01/12 All Official Release

© Vecow AIO3315 Software Development Kit iii

Declaimer
This manual is released by Vecow Co., Ltd. for reference purpose only. All product offerings and

specifications are subject to change without prior notice. It does not represent commitment of

Vecow Co., Ltd. Vecow shall not be liable for direct, indirect, special, incidental, or consequential

damages arising out of the use of the product or documentation or any infringements upon the

rights of third parties, which may result from such use.

Declaration of Conformity

FCC

This equipment has been tested and found to comply with the limits for a Class A digital device,

pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection

against harmful interference when the equipment is operated in a commercial environment. This

equipment generates, uses, and can radiate radio frequency energy, and if it is not installed and

used in accordance with the instruction manual, it may cause harmful interference to radio

communications. Operation of this equipment in a residential area is likely to cause harmful

interference in which case the user will be required to correct the interference at his own expense.

CE

The products described in this manual complies with all applicable European Union (CE) directives if

it has a CE marking. For computer systems to remain CE compliant, only CE-compliant parts may be

used. Maintaining CE compliance also requires proper cable and cabling techniques.

Copyright and Trademarks
This document contains proprietary information protected by copyright. No part of this publication

may be reproduced in any form or by any means, electric, photocopying, recording or otherwise,

without prior written authorization by Vecow Co., Ltd. The rights of all the brand names, product

names, and trademarks belong to their respective owners.

© Vecow AIO3315 Software Development Kit iv

Table of Contents
CHAPTER 1 INSTALL THE SOFTWARE _________________________________ 1

1.1 How to Install the Software __ 1

1.1.1 Install PCI driver __ 1

1.1.2 Where to Find the Files __ 1

1.1.3 About the Software Package __ 2

1.2 Language Support __ 3

1.2.1 Building Applications with the AIO3315 Software Library _______________________ 3

1.2.2 AIO3315 Windows Library __ 3

CHAPTER 2 DLL FUNCTIONS __ 5

2.1 Function Format and Language Difference ________________________________ 5

2.1.1 Function Format ___ 5

2.1.2 Variable Data Types ___ 5

2.1.3 Programming Language Considerations _____________________________________ 7

2.2 Flow Chart of Application Implementation ________________________________ 9

2.2.1 Flow chart of Application Implementation ___________________________________ 9

2.3 Software Overview and DLL Function ___________________________________ 10

2.3.1 DLL list __ 10

2.3.2 General Functions ___ 11

2.3.3 DA (Digital to Analog) Function ___ 12

2.3.4 AD (Analog to Digital) Function ___ 13

2.3.5 I/O Port R/W ___ 18

2.3.6 Timer Function __ 22

2.3.7 Interrupt Function ___ 24

2.3.8 Error Conditions ___ 29

2.4 Error Code Table __ 30

2.4.1 Error Code Table __ 30

© Vecow AIO3315 Software Development Kit 1

CHAPTER 1 INSTALL THE SOFTWARE

1.1 How to Install the Software

1.1.1 Install PCI driver

The PCI card is a plug and play card, once you add on a new card, the window system will

detect while it is booting. Please follow the following steps to install your new card.

For Windows XP / Windows 7 and up: (take Win XP as example)

1. Make sure the power is off

2. Plug in the interface card

3. Power on

4. A hardware install wizard will appear and tell you it finds a new PCI card

5. Do not response to the wizard, just Install the file

(..\AIO3315_A\Software\WinXP_7_10\ or if you download from website please execute

the file AIO3315_Install(Vx.x_yyyymm).exe to get the file)

6. After installation, power off

7. Power on, it’s ready to use

1.1.2 Where to Find the Files

For Windows XP / Windows 7 and up, the directory will be located at your install path:

..\AIO3315\API\(header files and lib files for VB, VC, BCB, C#, VB.net)

..\AIO3315\API\x64(for x64 system, header files and lib files for VC, BCB, C#, VB.net)

..\AIO3315\Driver\(backup copy of AIO3315 drivers)

..\AIO3315\exe\(demo program and source code)

The system driver is located at windows_folder\system32\Drivers and the DLL is located at

windows_folder\system.

Note:

 For Windows 32-bit system, the default directory at “C:\Program Files”

 For Windows 64-bit system, the default directory at “C:\Program Files (x86)”

 Windows folder: windows install path (usually at “C:\windows\”)

For your easy startup, the demo program with source code demonstrates the card functions

and help file.

© Vecow AIO3315 Software Development Kit 2

1.1.3 About the Software Package

AIO3315 software includes a set of dynamic link library (DLL) and system driver that you can

utilize to control the I/O card’s ports and points separately.

Your AIO3315 software package includes setup driver, tutorial example and test program

that help you how to setup and run appropriately, as well as an executable file which you

can use to test each of the AIO3315 functions within Windows’ operation system

environment.

To set up and use your AIO3315 software, you need the following:

 AIO3315 software

 AIO3315 hardware Main board

 Wiring board (Option)

You have several options to choose from when you are programming AIO3315 software. You

can use Borland C/C++, Microsoft Visual C/C++, Microsoft Visual Basic, or any other

Windows-based compiler that can call into Windows dynamic link libraries (DLLs) for use

with the AIO3315 software.

© Vecow AIO3315 Software Development Kit 3

1.2 Language Support

The AIO3315 software library is a DLL used with Windows XP / Windows 7 and up. You can

use these DLL with any Windows integrating development environment that can call

Windows DLLs.

1.2.1 Building Applications with the AIO3315 Software Library

The AIO3315 function reference topic contains general information about building AIO3315

applications, describes the nature of the AIO3315 files used in building AIO3315 applications,

and explains the basics of making applications using the following tools:

 Microsoft Visual C/C++

 Borland C/C++

 Microsoft Visual C#

 Microsoft Visual Basic

 Microsoft VB.net

If you are not using one of the tools listed, consult your development tool reference manual

for details on creating applications that call DLLs.

1.2.2 AIO3315 Windows Library

The AIO3315 for Windows function library is a DLL called AIO3315.dll. Since a DLL is used,

AIO3315 functions are not linked into the executable files of applications. Only the

information about the AIO3315 functions in the AIO3315 import libraries is stored in the

executable files. Import libraries contain information about their DLL-exported functions.

They indicate the presence and location of the DLL routines. Depending on the development

tools you are using, you can make your compiler and linker aware of the DLL functions

through import libraries or through function declarations.

Refer to Table 1 to determine to which files you need to link and which to include in your

development to use the AIO3315 functions in AIO3315.dll.

Table 1. Header Files and Import Libraries for Different Development Environment

Language Header File Import Library

Microsoft Visual C/C++ AIO3315.h AIO3315VC.lib

Borland C/C++ AIO3315.h AIO3315BC.lib

Microsoft Visual C# AIO3315.cs

© Vecow AIO3315 Software Development Kit 4

Microsoft Visual Basic AIO3315.bas

Microsoft VB.net AIO3315.vb

© Vecow AIO3315 Software Development Kit 5

CHAPTER 2 DLL FUNCTIONS

2.1 Function Format and Language Difference

2.1.1 Function Format

Every AIO3315 function is consist of the following format:

Status = function_name (parameter 1, parameter 2, … parameter n);

Each function returns a value in the Status global variable that indicates the success or

failure of the function. A returned Status equal to zero that indicates the function executed

successfully. A non-zero status indicates failure that the function did not execute successfully

because of an error or executed with an error.

Note: Status is a 32-bit unsigned integer.

The first parameter to almost every AIO3315 function is the parameter CardID which is

located the driver of AIO3315 board you want to use those given operation. The CardID is

assigned by DIP/ROTARY SW. You can utilize multiple devices with different card CardID

within one application; to do so, simply pass the appropriate CardID to each function.

Note: CardID is set by DIP/ROTARY SW (0x0-0xF)

These topics contain detailed descriptions of each AIO3315 function. The functions are

arranged alphabetically by function name. Refer to AIO3315 Function Reference for

additional information.

2.1.2 Variable Data Types

Every function description has a parameter table that lists the data types for each parameter.

The following sections describe the notation used in those parameter tables and throughout

the manual for variable data types.

© Vecow AIO3315 Software Development Kit 6

Table 2. Data Type Parameter Table

Primary Type Names

Name Description Range C/C++ Visual BASIC
Pascal

(Borland
Delphi)

u8
8-bit ASCII
character

0 to 255 char

Not supported by
BASIC. For functions
that require character
arrays, use string

types instead.

Byte

I16
16-bit signed
integer

-32, 768 to 32,
767

short
Integer (for example:
Device Num%)

Small Int

U16
16-bit unsigned
integer

0 to 65, 535

unsigned
short for
32-bit
compilers

Not supported by

BASIC. For functions
that require unsigned
integers, use the
signed integer type
instead.
See the i16

description.

Word

I32
32-bit signed
integer

-2, 147, 483, 648
to
2, 147, 483, 647

long
Long
(for example: count&)

Long Int

U32
32-bit unsigned
integer

0 to
4, 294, 967, 295

Unsigned
long

Not supported by
BASIC. For functions

that require unsigned
long integers, use the
signed long integer
type instead. See the
i32 description.

Cardinal (
in 32-bit

operating
systems).
Refer to the
i32
description.

F32

32-bit
single-precision
floating-point
value

-3.402823E+38
to 3.402823E+38

float
Single (for example:
num!)

Single

F64

64-bit
double-precision
floating-point
value

-1.797683134862
315E+308 to
1.797683134862
315E+308

double
Double (for example:
voltage Number)

Double

© Vecow AIO3315 Software Development Kit 7

2.1.3 Programming Language Considerations

Apart from the data type differences, there are a few language-dependent considerations

you need to be aware of when you use the AIO3315 API. Read the following sections that

apply to your programming language.

Note: Be sure to include the declaration functions of AIO3315 prototypes by including the

appropriate AIO3315 header file in your source code. Refer to Building Applications with the

AIO3315 Software Library for the header file appropriate to your compiler.

Function format for C/C++

For C or C++ programmers, parameters listed as Input/Output parameters or Output

parameters are pass-by-reference parameters, which means a pointer points to the

destination variable should be passed into the function. For example, the Read Port function

has the following format:

Status = AIO3315_port_read (u8 CardID, u8 port, u8*data);

where CardID and port are input parameters, and data is an output parameter. Consider the

following example:

u8 CardID, port; u8 data,

u32 Status;

Status = AIO3315_port_read (CardID, port, &data);

Function format for Visual basic

The file AIO3315.bas contains definitions for constants required for obtaining DIO Card

information and declared functions and variable as global variables. You should use these

constants symbols in the AIO3315.bas, do not use the numerical values.

In Visual Basic, you can add the entire AIO3315.bas file into your project. Then you can use

any of the constants defined in this file and call these constants in any module of your

program. To add the AIO3315.bas file for your project in Visual Basic 4.0, go to the File menu

and select the Add File... option. Select AIO3315.bas, which is browsed in the AIO3315 \ API

directory. Then, select Open to add the file to the project.

To add the AIO3315.bas file to your project in Visual Basic 5.0 and 6.0, go to the Project

menu and select Add Module. Click on the Existing tab page. Select AIO3315.bas, which is in

the AIO3315 \ API directory. Then, select Open to add the file to the project

Function format for Borland C++ builder

© Vecow AIO3315 Software Development Kit 8

To use Borland C++ builder as development tool, you should generate a .lib file from the .dll

file by implib.exe.

implib AIO3315BC.lib AIO3315.dll

Then add the AIO3315BC.lib to your project and add #include “AIO3315.h” to main program.

Now you may use the DLL functions in your program. For example, the Read Port function

has the following format:

Status = AIO3315_port_read (u8 CardID, u8 port, u8*data);

where CardID and port are input parameters, and data is an output parameter. Consider the

following example:

u8 CardID, port; u8 data;

u32 Status;

Status = AIO3315_port_read (CardID, port, &data);

© Vecow AIO3315 Software Development Kit 9

2.2 Flow Chart of Application Implementation

2.2.1 Flow chart of Application Implementation

You need to initialize system resource each time you run your application. AIO3315_initial()

will do. Once you want to close your application, call AIO3315_close() to release all the

resource. If you want to know the physical address assigned by OS. Use AIO3315_info() to

get the address and Card Type

© Vecow AIO3315 Software Development Kit 10

2.3 Software Overview and DLL Function

2.3.1 DLL list

Table 3. DLL list

No. Function Name Description

1. AIO3315_initial() AIO3315 Initial

2. AIO3315_close() AIO3315 Close

3. AIO3315_info() get OS. Assigned address

4. AIO3315_DA_set() DA output

5. AIO3315_DA_read() read back DA setting data

6. AIO3315_AD_config_set() configure each channel as differential or single

end

7. AIO3315_AD_config_read() read back configuration of each channel

8. AIO3315_AD_range_set() set up each group conversion range

9. AIO3315_AD_range_read() Read back each group conversion range setting

10. AIO3315_AD_start() start AD conversion of designated channel

11. AIO3315_AD_read() read AD conversion data

12. AIO3315_AD_all_read() Read a specific port AD data

13. AIO3315_port_config_set() Port direction configuration

14. AIO3315_port_config_read() Read back port configuration

15. AIO3315_debounce_time_set() Set input port debounce time

16. AIO3315_debounce_time_read() Read back input port debounce time

17. AIO3315_port_set() Set Output port

18. AIO3315_port_read() Read the register or input values of the I/O port

19. AIO3315_point_set () Set the bit data of output port

20. AIO3315_point_read() Read the state of the input points or output register

21. AIO3315_timer_set() Set timer constant

22. AIO3315_timer_read() Read timer on the fly

23. AIO3315_timer_start() Start timer operation

24. AIO3315_timer_stop() Stop timer operation

© Vecow AIO3315 Software Development Kit 11

25. AIO3315_TC_set() load data to timer related registers

26. AIO3315_TC_read() Read back data of timer related registers

27. AIO3315_IRQ_polarity_set() Sets the IRQ polarity of port0

28. AIO3315_IRQ_polarity_read() Read back the setting of IRQ polarity

29. AIO3315_IRQ_mask_set() Mask off the IRQ

30. AIO3315_IRQ_mask_read() Read back the mask

31. AIO3315_IRQ_process_link() Link irq service routine

32. AIO3315_IRQ_enable() Enable interrupt function

33. AIO3315_IRQ_disable() Disable interrupt function

34. AIO3315_IRQ_status_read() Read back the IRQ status

2.3.2 General Functions

AIO3315_initial

Format: u32 status =AIO3315_initial (void)

Purpose: Initial the AIO3315 resource when start the Windows applications.

AIO3315_close

Format: u32 status =AIO3315_close (void);

Purpose: Release the AIO3315 resource when close the Windows applications.

AIO3315_info

Format: u32 status =AIO3315_info(u8 CardID, u8 *CardType, u16 *DIO_address, u16

*TC_address);

Purpose: Read the physical I/O address assigned by O.S.

Parameters:

I/O Name Type Description

Input CardID u8 assigned by DIP/ROTARY SW

Output

CardType u8 0: AIO3315 (12 bit version)

1: AIO3315A (16 bit version)

DIO_address u16 physical I/O address assigned to DIO block by OS

TC_address u16 physical I/O address assigned to timer block by OS

© Vecow AIO3315 Software Development Kit 12

2.3.3 DA (Digital to Analog) Function

The digital to analog conversion function is implemented by hardware, to output analog

voltage just use:

AIO3315_DA_set(), and you can also read back the settings by

AIO3315_DA_read().

AIO3315_DA_set

Format: u32 status = AIO3315_DA_set(u8 CardID, u8 channel, u16 data)

Purpose: DA output

Parameters:

I/O Name Type Description

Input

CardID u8 assigned by DIP/ROTARY SW

channel u8 0: DA0 channel

1: DA1 channel

data u16 0~0xfff (AIO3315), 0~0xffff (AIO3315A) for analog

output range -10V~ +10V

0: -10V

…

0x7ff (AIO3315) 0x7fff (AIO3315A): 0V

…

0xfff (AIO3315) 0xffff (AIO3315A): 10V

AIO3315_DA_read

Format: u32 status = AIO3315_DA_read(u8 CardID, u8 channel, u16 *data)

Purpose: read back DA setting data

Parameters:

I/O Name Type Description

Input

CardID u8 assigned by DIP/ROTARY SW

channel u8 0: DA0 channel

1: DA1 channel

Output

data u16 0~0xfff (AIO3315), 0~0xffff (AIO3315A) for analog

output –10V ~ 10V

0: -10V

…

© Vecow AIO3315 Software Development Kit 13

0x7ff (AIO3315) 0x7fff (AIO3315A): 0V

…

0xfff (AIO3315) 0xffff (AIO3315A): 10V

2.3.4 AD (Analog to Digital) Function

The analog input maybe single end or differential, you can configure individual channel as

single end input or the corresponding pair as differential input by:

AIO3315_AD_config_set() and read back to verify the configuration setting by

AIO3315_AD_config_read().

The analog inputs maybe at different voltage range, you can configure the adequate input

range to fit the inputs by:

AIO3315_AD_range_set() and read back to verify the settings by:

AIO3315_AD_range_read()

Once the input type and input range has been set, you can start AD conversion by:

AIO3315_AD_start () and read the conversion data by

AIO3315_AD_read().

To read a specific port (contains 8 channels) use:

AIO3315_AD_all_read()

AIO3315_AD_config_set

Format: u32 status = AIO3315_AD_config_set (u8 CardID, u8 port, AD_config

*AD_config)

Purpose: configure each channel as differential or single end.

Parameters:

I/O Name Type Description

Input

CardID u8 assigned by DIP/ROTARY SW

port u8 0: port0, AD0x

1: port1, AD1x

2: port2, AD2x

3: port3, AD3x

AD_config AD_config struct _AD_config{ u8 ch01_config, u8 ch23_config, u8

© Vecow AIO3315 Software Development Kit 14

ch45_ config, u8 ch67_ config

}

// ch01: AIx0~AIx1

// ch23: AIx2~AIx3

// ch45: AIx4~AIx5

// ch67: AIx6~AIx7

// chNM_config:

//0: chNM is paired differential and polarity is normal

//1: chNM is paired differential and polarity is inverse

//2: invalid

//3: chNM is single end

For example, if you will configure

channel 0, 1 as differential with polarity normal,

channel 2, 3 as single end

channel 4, 5, channel 6, 7 as differential with inverse

polarity then struct AD_config is {0, 3, 1, 1}

AIO3315_AD_config_read

Format: u32 status = AIO3315_AD_config_read (u8 CardID, u8 port,

AD_config*AD_config)

Purpose: read back configuration of each channel.

Parameters:

I/O Name Type Description

Input

CardID u8 assigned by DIP/ROTARY SW

port u8 0: port0, AD0x

1: port1, AD1x

2: port2, AD2x

3: port3, AD3x

Output
AD_config AD_config struct _AD_config{ u8 ch01_config, u8 ch23_config, u8

ch45_ config, u8 ch67_ config}

AIO3315_AD_range_set

Format: u32 status = AIO3315_AD_range_set(u8 CardID, u8 port, AD_range

*AD_range)

Purpose: set up each group conversion range

© Vecow AIO3315 Software Development Kit 15

Parameters:

I/O Name Type Description

Input

CardID u8 assigned by DIP/ROTARY SW

port u8 0: port0, AD0x

1: port1, AD1x

2: port2, AD2x

3: port3, AD3x

AD_range AD_range struct _AD_Range{ u8 ch0_ range, u8 ch1_ range, u8

ch2_ range, u8 ch3_ range

u8 ch4_ range, u8 ch5_ range, u8 ch6_ range, u8 ch7_

range}

// chN_range

//0: +-5V

//1: 0-5V

//2: +-10V

//3: 0-10V

Note:

 If the even channel is configured as differential input, the next odd number channel

member is invalid.

 For example ch0 is configured as differential input by AIO3315_AD_config_set, then the

AD_Range.ch1_range is of no use.

AIO3315_AD_range_read

Format: u32 status = AIO3315_AD_range_read(u8 CardID, u8 port, AD_range

*AD_range)

Purpose: read back each group conversion range setting

Parameters:

I/O Name Type Description

Input

CardID u8 assigned by DIP/ROTARY SW

port u8 0: port0, AD0x

1: port1, AD1x

2: port2, AD2x

3: port3, AD3x

Output AD_range AD_range struct _AD_Range{ u8 ch0_ range, u8 ch1_ range, u8

© Vecow AIO3315 Software Development Kit 16

ch2_ range, u8 ch3_ range

u8 ch4_ range, u8 ch5_ range, u8 ch6_ range, u8 ch7_

range

}

// chN_range

//0: +-5V

//1: 0-5V

//2: +-10V

//3: 0-10V

AIO3315_AD_start

Format: u32 status = AIO3315_AD_start(u8 CardID, u8 port, u8 channel)

Purpose: start AD conversion of designated port and channel

Parameters:

I/O Name Type Description

Input

CardID u8 assigned by DIP/ROTARY SW

port u8 0: port0, AD0x

1: port1, AD1x

2: port2, AD2x

3: port3, AD3x

channel u8 0~7, channel no for portN

AIO3315_AD_read

Format: u32 status = AIO3315_AD_read(u8 CardID, u8 port, u16 *data)

Purpose: read AD conversion data of previous designated port and channel

Parameters:

I/O Name Type Description

Input

CardID u8 assigned by DIP/ROTARY SW

port u8 0: port0, AD0x

1: port1, AD1x

2: port2, AD2x

3: port3, AD3x

data u16 0~0xfff (AIO3315),

0~0xffff (AIO3315A).

© Vecow AIO3315 Software Development Kit 17

AD converted data

Note:

 AIO3315_AD_start will select the port and channel for the next AD operation.

 Before read back the data by AIO3315_AD_read, you must check the status by

AIO3315_IRQ_status_read (no matter you use interrupt or not) to confirm the AD data

is ready.

 The AD conversion time frame is as follows:

At the same time frame, the command starts the designated AD channel and collect the

converted data. In order to confirm the operation is complete, we suggest using

AIO3315_IRQ_status_read to verify the completeness of conversion then use

AIO3315_AD_read to read the converted data.

AIO3315_AD_all_read

Format: u32 status = AIO3315_AD_all_read(u8 CardID, u8 port, u16 data[8])

Purpose: read AD conversion data of all channels of a specific port.

Parameters:

I/O Name Type Description

Input

CardID u8 assigned by jumper setting

port u8 0: port0, AD0x

1: port1, AD1x

2: port2, AD2x

3: port3, AD3x

data[8] u16 0~0xfff (AIO3315),

0~0xffff (AIO3315A). AD converted data

Note:

 To read all channels, please follow the sequence:

© Vecow AIO3315 Software Development Kit 18

1. Set up start channel at channel 0 by AIO3315_AD_start.

2. Read all channels by AIO3315_AD_all_read.

2.3.5 I/O Port R/W

Before using a IO port, you must configure the port direction (as input or as output) first by

AIO3315_port_config_set() and any time you can read back configuration by

AIO3315_port_config_read()

Mechanical contact or noisy environment always induced unstable state at digital inputs, the

AIO3315 provides software selectable debounce function (the former digital IO cards use

hardware debounce and fixed at one frequency). You can filter out the pulse width at 10ms

(100Hz), 5ms (200Hz), 1ms (1KHz) or no filter as you need.

Use AIO3315_debounce_time_set() to select the debounce frequency and read back the

setting by AIO3315_debounce_tme_read().

Then you can use the following functions for I/O port output, data reading and control:

AIO3315_port_set() to output byte data to output port,

AIO3315_port_read() to read a byte data from I/O port,

AIO3315_point_set () to set output bit,

AIO3315_point_read() to read I/O bit,

AIO3315_port_config_set

Format: u32 status =AIO3315_port_config_set (u8 CardID, u8 port, u8 configuration)

Purpose: Sets port configuration.

Parameters:

I/O Name Type Description

Input

CardID u8 assigned by Rotary SW

port u8 port number 0: port0

1: port1

configuration u8 b0:

0: port0 as input port (default) 1: port0 as output port

b1:

0: port1 as input port (default) 1: port1 as output port

AIO3315_port_config_read

© Vecow AIO3315 Software Development Kit 19

Format: u32 status =AIO3315_port_config_read (u8 CardID, u8 port, u8

*configuration)

Purpose: read port configuration.

Parameters:

I/O Name Type Description

Input

CardID u8 assigned by Rotary SW

port u8 port number 0: port0

1: port1

Output

configuration u8 b0:

0: port0 as input port (default) 1: port0 as output port

b1:

0: port1 as input port (default) 1: port1 as output port

AIO3315_debounce_time_set

Format: u32 status = AIO3315_debounce_time_set (u8 CardID, u8 port, u8

debounce_time)

Purpose: set the input port debounce time

Parameters:

I/O Name Type Description

Input

CardID u8 assigned by Rotary SW

port u8 port number 0: port0

1: port1

debounce_time u8 Debounce time selection: 0: no debounce

1: filter out duration less than 10ms (default)

2: filter out duration less than 5ms

3: filter out duration less than 1ms

Note: only valid for port configured as input

AIO3315_debounce_time_read

Format: u32 status = AIO3315_debounce_time_read (u8 CardID, u8 port, u8

*debounce_time)

Purpose: To read back configuration of debounce mode

Parameters:

© Vecow AIO3315 Software Development Kit 20

I/O Name Type Description

Input

CardID u8 assigned by Rotary SW

port u8 port number 0: port0

1: port1

Output

debounce_

time

u8 Debounce time selection: 0: no debounce

1: filter out duration less than 10ms (default)

2: filter out duration less than 5ms

3: filter out duration less than 1ms

AIO3315_port_set

Format: u32 status = AIO3315_port_set (u8 CardID, u8 port, u8 data)

Purpose: Sets the output data.

Parameters:

I/O Name Type Description

Input

CardID u8 assigned by Rotary SW

port u8 port number 0: port0

1: port1

data u8 bitmap of output values

If port is configured as input, the data is registered and

do not output.

If port is configured as output, the data is registered

and output.

Note: If you change the configuration from input to output, the previous registered data will

be output.

AIO3315_port_read

Format: u32 status = AIO3315_port_read (u8 CardID, u8 port, u8 *data)

Purpose: Read the register or input values of the I/O port.

Parameters:

I/O Name Type Description

Input

CardID u8 assigned by Rotary SW

port u8 port number 0: port0

1: port1

© Vecow AIO3315 Software Development Kit 21

Output

data u8 I/O data

If port is configured as input, the data is external input

data.

If port is configured as output, the

data is the output register data.

AIO3315_point_set

Format: u32 status =AIO3315_point_set (u8 CardID, u8 port, u8 point, u8 state)

Purpose: Sets the bit data of output port.

Parameters:

I/O Name Type Description

Input

CardID u8 assigned by Rotary SW

port u8 port number 0: port0

1: port1

point u8 point number

0~7 for bit0~bit7

state u8 state of output point

If port is configured as input, the data is registered and

do not output.

If port is configured as output, the data is

registered and output.

Note: If you change the configuration from input to output, the previous registered data will

be output.

AIO3315_point_read

Format: u32 status =AIO3315_point_read (u8 CardID, u8 port, u8 point, u8 *state)

Purpose: Read the state of the input points or output register.

Parameters:

I/O Name Type Description

Input

CardID u8 assigned by Rotary SW

port u8 port number 0: port0

1: port1

point u8 point number of input

© Vecow AIO3315 Software Development Kit 22

0~7 for bit0~bit7

Output

state u8 state of point of input

If port is configured as input, the data is external input

data.

If port is configured as output, the data is

the output register data.

2.3.6 Timer Function

There is a build in 32 bit timer run on 1us time base, you can set the timer constant by

AIO3315_timer_set() and AIO3315_timer_read() to read timer value on the fly.

AIO3315_timer_start() to start its operation and generate interrupt, AIO3315_timer_stop()

to stop operation.

For the timer related registers use: AIO3315_TC_set() to set registers, AIO3315_TC_read()

to read back registers.

AIO3315_timer_set

Format: u32 status = AIO3315_timer_set (u8 CardID, u32 Timer_constant)

Purpose: set time constant.

Parameters:

I/O Name Type Description

Input
CardID u8 assigned by DIP/ROTARY SW

Timer_constant u32 Timer _constant based on 1us time base

Note:

1. Time constant is based on 1us clock, period T= (time_constant +1) * 1us

2. If you also enable the timer interrupt, the period T must at least larger than the system

interrupt response time else the system will be hanged by excess interrupts.

AIO3315_timer_read

Format: u32 status = AIO3315_timer_read (u8 CardID, u32 * Timer_constant)

Purpose: To read timer value on the fly

Parameters:

I/O Name Type Description

© Vecow AIO3315 Software Development Kit 23

Input CardID u8 assigned by DIP/ROTARY SW

Output Timer_constant u32 timer value on the fly

AIO3315_timer_start

Format: u32 status = AIO3315_timer_start (u8 CardID)

Purpose: start timer function.

Parameters:

I/O Name Type Description

Input CardID u8 assigned by DIP/ROTARY SW

Note: timer time out will generate interrupt if you do not mask off by using

AIO3315_IRQ_mask_set.

AIO3315_timer_stop

Format: u32 status = AIO3315_timer_stop (u8 CardID)

Purpose: stop timer function.

Parameters:

I/O Name Type Description

Input CardID u8 assigned by DIP/ROTARY SW

AIO3315_TC_set

Format: u32 status= AIO3315_TC_set (u8 CardID, u8 index, u32 data)

Purpose: To load data to timer related registers

Parameters:

I/O Name Type Description

Input

CardID u8 assigned by DIP/ROTARY SW

index u8 0: TC_CONTROL

1: PRELOAD

2: TIMER

data u32 For index = TC_CONTROL 0: stop timer operation

1: timer run

For index = PRELOAD or TIMER Data is the constant to

be load

© Vecow AIO3315 Software Development Kit 24

Note: PRELOAD is the register for timer to re-load, the value will be valid while timer count

to zero and reload the data.

AIO3315_TC_read

Format: u32 status= AIO3315_TC_read (u8 CardID, u8 index, u32 *data)

Purpose: To read data from timer related registers

Parameters:

I/O Name Type Description

Input

CardID u8 assigned by DIP/ROTARY SW

index u8 0: TC_CONTROL

1: PRELOAD

2: TIMER

Output data u32 Data read back

2.3.7 Interrupt Function

Sometimes you want your application to take care of the I/O while special event occurs,

interrupt function is the right choice. AIO3315 provide IO00 ~ IO07 as external event trigger

input. You may configure the trigger polarity by:

AIO3315_IRQ_polarity_set() and read back by

AIO3315_IRQ_polarity read()

For timer, AD and digital IO interrupts, you can mask off the source you don’ want by

AIO3315_IRQ_mask_set() and read back by

AIO3315_IRQ_mask_read().

After all the above is prepared, you must first link your service routine to the driver by

AIO3315_IRQ_process_link()

Now all is ready, you can enable the interrupt by AIO3315_IRQ_enable() or disable by

AIO3315_IRQ_disable().

To read back the interrupt status (at interrupt service routine or polling routine) use

AIO3315_IRQ_status_read().

After reading the status register on card will be cleared.

AIO3315_IRQ_polarity_set

Format: u32 status = AIO3315_IRQ_polarity_set (u8 CardID, u8 polarity)

Purpose: Sets the IRQ polarity of port0 (IO00~IO07)

Parameters:

© Vecow AIO3315 Software Development Kit 25

I/O Name Type Description

Input

CardID u8 assigned by Rotary SW

polarity u8 Data to be set, 0x0 ~ 0xff bit0: IO00

0:normal (default) 1:invert

…

bit7: IO07 0:normal (default)

1:invert

Note: Port0 must configured as input port for IO00~IO07 IRQ function.

AIO3315_IRQ_polarity_read

Format: u32 status = AIO3315_IRQ_polarity_read (u8 CardID, u8 *polarity)

Purpose: Read the IRQ polarity of the IO00~IO07

Parameters:

I/O Name Type Description

Input CardID u8 assigned by Rotary SW

Output

polarity u8 Data to be set, 0x0 ~ 0xff bit0: IO00

0:normal (default) 1:invert

…

bit7: IO07 0:normal (default)

1:invert

AIO3315_IRQ_mask_set

Format: u32 status = AIO3315_IRQ_mask_set (u8 CardID, u8 source, u8 mask)

Purpose: Mask interrupt from port0 IO07~IO00 or timer

Parameters:

I/O Name Type Description

Input

CardID u8 assigned by Rotary SW

source u8 0: digital I/O block 1: AD block

2: timer block

mask u8 Digital IO block:

b0=0, IO00 input disable irq b0=1, IO00 input can

generate irq

…

© Vecow AIO3315 Software Development Kit 26

b7=0, IO07 input disable irq b7=1, IO07input can

generate irq

AD block:

b0=1 means AD0 end of conversion can generate

interrupt

b0=0 AD0 will not generate interrupt while end of

conversion

b1=1 means AD1 end of conversion can generate

interrupt

b1=0 AD1 will not generate interrupt while end of

conversion

b2=1 means AD2 end of conversion can generate

interrupt

b2=0 AD2 will not generate interrupt while end of

conversion

b3=1 means AD3 end of conversion can generate

interrupt

b3=0 AD3 will not generate interrupt while end of

conversion

Timer block:

b0=1 means timer time out can generate interrupt

b0=0 timer will not generate interrupt

while time out

AIO3315_IRQ_mask_read

Format: u32 status = AIO3315_IRQ_mask_read (u8 CardID, u8 source, u8 *mask)

Purpose: read back interrupt Mask of IO07~IO00 or ADC or timer

Parameters:

I/O Name Type Description

Input

CardID u8 assigned by Rotary SW

source u8 0: digital I/O block 1: AD block

2: timer block

Output

mask u8 Digital IO block:

b0=0, IO00 input disable irq b0=1, IO00 input can

generate irq

© Vecow AIO3315 Software Development Kit 27

…

b7=0, IO07 input disable irq b7=1, IO07input can

generate irq

AD block:

b0=1 means AD0 end of conversion can generate

interrupt

b0=0 AD0 will not generate interrupt while end of

conversion

b1=1 means AD1 end of conversion can generate

interrupt

b1=0 AD1 will not generate interrupt while end of

conversion

b2=1 means AD2 end of conversion can generate

interrupt

b2=0 AD2 will not generate interrupt while end of

conversion

b3=1 means AD3 end of conversion can generate

interrupt

b3=0 AD3 will not generate interrupt while end of

conversion

Timer block:

b0=1 means timer time out can generate interrupt

b0=0 timer will not generate interrupt while time

out

AIO3315_IRQ_process_link

Format: u32 status = AIO3315_IRQ_process_link (u8 CardID, void (stdcall

*callbackAddr)(u8 CardID))

Purpose: Link irq service routine to driver

Parameters:

I/O Name Type Description

Input

CardID u8 assigned by Rotary SW

callbackAddr void callback address of service

routine

© Vecow AIO3315 Software Development Kit 28

AIO3315_IRQ_enable

Format: u32 status = AIO3315_IRQ_enable (u8 CardID, HANDLE *phEvent)

Purpose: Enable interrupt from selected source

Parameters:

I/O Name Type Description

Input CardID u8 assigned by Rotary SW

Output phEvent HANDLE event handle

AIO3315_IRQ_disable

Format: u32 status = AIO3315_IRQ_disable (u8 CardID)

Purpose: Disable interrupt from selected source

Parameters:

I/O Name Type Description

Input CardID u8 assigned by Rotary SW

AIO3315_IRQ_status_read

Format: u32 status = AIO3315_IRQ_status_read (u8 CardID, u8 source, u8

*Event_Status)

Purpose: To read back the interrupt status to identify the source

Parameters:

I/O Name Type Description

Input

CardID u8 assigned by Rotary SW

source u8 0: digital I/O block 1: AD block

2: timer block

Output

Event_Status u8 Digital IO block:

b0=1, IO00 input generate irq

…

b7=1, IO07 input generate irq

AD block:

b0=1, AD0 end of conversion and data is ready

b0=0, AD0 is under conversion

b1=1, AD1 end of conversion and data is ready

b1=0, AD1 is under conversion

© Vecow AIO3315 Software Development Kit 29

b2=1, AD2 end of conversion and data is ready

b2=0, AD2 is under conversion

b3=1, AD3 end of conversion and data is ready

b3=0, AD3 is under conversion

Timer block:

b0=1 means timer count up occurred. b0=0 means

timer not count up.

Note:

 Status read back will also clear the on board status register.

 The status will reflect the on board digital input or timer count up status are irrelevant

to the IRQ_MASK

2.3.8 Error Conditions

The status returned by AIO3315 functions may indicate an internal hardware problem on the

board.

Error Codes contains a detailed listing of the error. AIO3315 card’s error conditions. There

are three possible fatal failure modes:

 System Fail Status Bit Valid

 Communication Loss

 Hardware not ready

Please take the error code as reference to solve the problem.

© Vecow AIO3315 Software Development Kit 30

2.4 Error Code Table

2.4.1 Error Code Table

Error Code Symbolic Name Description

0 DRV_NO_ERROR No error.

1 DRV_READ_DATA_ERROR Read data error

2 DRV_INIT_ERROR Driver initial error

100 DEVICE_IO_ERROR Device Read/Write error

101 DRV_NO_CARD No AIO3315 card on the system.

102 DRV_DUPLICATE_ID AIO3315 CardID duplicate error.

103 DRV_NOT_INSTALL AIO3315 driver not installed completely

300 ID_ERROR
Function input parameter error. CardID setting

error, CardID doesn’t match the DIP SW setting

301 PORT_ERROR
Function input parameter error.

Parameter out of range.

302 POINT_ERROR
Function input parameter error.

Parameter out of range.

303 DATA_ERROR
Function input parameter error.

Parameter out of range.

304 CONFIGURATION_ERROR
Hardware version can not match with

software version

305 DEBOUNCE_TIME_ERROR Debounce timer setting error

400 INDEX_ERRROR TC register index error

401 CONSTANT_ERROR Time constant error

402 TC_CONTROL_ERROR TC control register setting error

500 DA_DATA_ERROR DA setting data error

501 DA_CHANNEL_ERROR DA channel selection error

600 AD_PORT_ERROR AD port selection error

601 AD_CHANNEL_ERROR AD channel selection error

602 AD_CONFIG_ERROR AD channel configuration error

603 AD_RANGE_ERROR AD range setting error

700 SOURCE_ERROR IRQ source error

701 POLARITY_ERROR IRQ polarity error

702 MASK_ERROR IRQ mask error

For further support information, please contact chris.huang@vecow.com

This document is released for reference purpose only.

All product offerings and specifications are subject to change without prior notice.

No part of this publication may be reproduced in any form or by any means, electric, photocopying,

or recording, without prior authorization from the publisher.

The rights of all the brand names, product names, and trademarks belong to their respective

owners.

© Vecow Co., Ltd. 2021. All rights reserved.

mailto:chris.huang@vecow.com

